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METHOD FOR CALCULATING THE AERODYNAMIC LOADING ON AN OSCILLATING FINITE
WING IN SUBSONIC AND SONIC FLOW 1

By Harry L. Runvan and Donarp 8. WooLstoN

SUMMARY

This report presents a method for determining the air forces
on an oscillating finite wing of general plan form in subsonic
Slow including the limiting case of sonic flow. The method
ulilizes some of the concepts developed by Falkner (British
R. & M. No. 1910) for steady lifting-surface theory. The load-
ing on the wing is assumed to be given by a series containing
unknown coefficients which satisfies various boundary con-
ditions at the edges. The required integrations are performed
by approximate means, and a set of simultaneous equations in
terms of the coefficients in the loading series is obtained.
Solution of this set of equations then gives the loading coefficients.
The method is applied to rectangular and delie wings and com~
parison 18 made with existing theory. A sample calculation
1§ given in an appendiz. ’

INTRODUCTION

The analytical determination of the air forces on oscillat-
ing wings has been & continuing problem for over 30 years.
Most of the effort has been directed toward the determina-
tion of the forces on wings in two-dimensional flow, and re-
sults have been obtained for a complete range of Mach
numbers, both subsonic and supersonic. For finite wings,
however, the analytical work is still in a state of develop-
ment for all speed ranges. The main effort has been di-
rected toward the incompressible case (for example, refs. 1
to 8) and the supersonic field (refs. 9 to 14) leaving an im-
portant area virtually untouched, namely, the subsonic range
of Mach numbers between 0 and 1. Among the fow studies
that have been made in this range of Mach numbers have
been those of Merbt and Landahl (ref. 15), who extended
some of the work at very low aspect ratio to include the ef-
fect of Mach number, and the work of Voss, Zartarian, and
Hsu (vef. 16). In addition, Reissner (ref. 17) made a pre-
liminary assessment of the use of Mathieu functions for
subsonic compressible flow, and W. P. Jones (ref. 18) and
Lehrian (ref. 19) studied the cases for larger aspect ratios.
The present report deals with some recent efforts which
have been made toward filling this gap, namely the develop-
ment of & wing-surface theory for subsonic and sonic flow.

In the stationary two-dimensional case, the effects of com-
pressibility may readily be obtained from results of incom-
pressible theory by application of simple transformation or
correction factors such as the well-known Prandtl-Glauert
factor. In the stationary three-dimensional case, the effect

1t Supersedes NAOA Technical Note 3694 by Harry L. Runyan and Donald 8. Woolston, 1656,

of compressibility may be treated as an extension of the two-
dimensional procedure in a simple manner as proposed by
Gaothert (ref. 20). In a further extension for the oscillating
compressible case, Miles (ref. 21) has proposed a method in-
volving several transformation steps for correcting the re-
sults of incompressible theory to include the effects of com-
pressibility for a finite wing. The method is, however, re-
stricted to low values of the reduced frequency. It there-
fore appears to be necessary to deal with the boundary-value
problem directly in order to provide a method of general
applicability which may be used, for example, in flutter work.

The linearized boundary-value problem for the oscillating
finite wing in & compressible flow may be approached from
two points of view. One approach involves the transforma-
tion of the governing differential equation by a suitable
choice of coordinates followed by the use of the classical
method of separation of variables. Solutions are then found
in terms of series of orthogonal functions. This method was
used by Schade and Krienes (ref. 22) in obtaining solutions
for the oscillating circular plate and has recently been gen-
eralized by Kuessner (ref. 23). It has been pointed out that
there is & definite limit to the number of generalized coordi-
nate systems appropriate to the wave equation and to the
corresponding orthogonal functions available. The method
is, therefore, limited to specialized plan forms such as the
circular or the elliptic plate.

The second approach involves & direct consideration of
the integral equation relating pressure and downwash. The
integral equation may be derived from the standpoint of
either the velocity potential or the acceleration potential.
Inasmuch as one is primarily interested in the pressures on the
wing surface, it seems more direct to use the form of the
integral equation associated with the pressure, namely, the
acceleration potential approach; therefore, this procedure is
used in the present report.

Basic to the solution of the integral equation is the eval-
uation of its kernel, a function which represents the down-
wash at & point in the plane of the wing due to a unit loading.
Only recently (ref. 24), the kernel function for oscillating
finite wings in subsonic and sonic flow has been reduced to &
form which can be conveniently evaluated. This back-
ground of available information on the kernel has led to the
consideration of numerical approaches for handling the
integral equation in the development of general lifting-
surface methods which could be used for any speed range.
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A similar integral equation appears in the steady case, but
involves a much simpler kernel function and a number of
approximate solutions have been successfully developed.
In selecting an approximate method for handling the integral
equation in the oscillatory case, the various procedures
developed for the steady case were examined. In con-
sidering these procedures, it was kept in mind that a lifting-
surface theory which is to be used for flutter calculations
must meet certain requirements beyond those usually con-
sidered in the steady case. One essential requirement isthat
not only the lift but also the moment must be accurately
predicted. In several of the methods now being used for
the steady case, the wing is essentially replaced by a single
line at the Y%-chord position. This placement essentially
fixes the center of pressure at the % chord, and thus the
moment is constrained to become a function only of the lift
force. In the case of an airplane of normal configuration
with a tail placed a considerable distance from the wing, the
contribution of the wing pitching moment is very small
compared with the pitching moment due to the tail. How-
ever, for tailless configurations and for aeroelastic problems
such as flutter, the moment on the wing is of predominant
importance and must be accurately predicted.

In addition to the previously mentioned Tequirement of
predicting the moment, the method should be easily adapt-
able to the calculation of the loading on oscillating flexible
wings and, in addition, should take into account the effects
of compressibility. It appeared that, among others, a
method developed for the steady incompressible case by
Falkner (ref. 25) could be extended to include these require-
ments and this method was selected as the basis for the
present investigation.

Among other methods considered was a multiple-line
approach suggested by the procedure of Schlichting and
Kahlert (ref. 26) for the case of steady flow. The procedure
is thought to be of interest in that it indicates a simpler
alternative wneans of handling the lifting-surface problems.
An extension of this method to the oscillatory case is also
made in the present investigation.

The primary aim of the present investigation has been the
development of a lifting-surface method for calculating the
forces on a wing of any plan form which is harmonically
oscillating in a subsonic or sonic flow. The method uses
some of the concepts of Falkner in an extension to the com-
pressible oscillating case. First, a brief description of the
basic integral equation and some of the possible means of
solution are given. Then, the basic theory of the method is
given in detail in the body of the report, and the results of
some calculations are shown for rectangular and delta
wings. In appendix A, the numerical details of calculating
the forces on a rectangular wing are given as anexample. In
appendix B, a treatment is given for certain integrals which
arise in the method and which contein singularities. In
appendix C the expression for the pitching moment for a
delta wing is obtained. Finally, in appendix D, a descrip-
tion and some results of applying a multiple-line approach,
based on a procedure used by Schlichting and Kahlert for
steady flow, are given.
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SYMBOLS

aspect ratio

axis of rotation measured from
midchord in terms of half-choxd,
positive aft

coefficients in expression forloading

half-chord, ft

lift coefficient associated with a
degree of freedom ¢

moment coefficient associated with
a degree of freedom ¢

chord, ft

nondimensional downwash factor
defined by equation (29)
chordwise loading function

chordwise replacement loads
spanwise loading functions

kernel of three-dimensional in-
tegral equation

kernel of two-dimensional integral
equation,
EM,Z)=

|~ ' M. p0—n |

nondimensional three-dimensional
kernel defined by equation (28)

reduced-frequency parameter
based on half-chord, bw/V

reduced-frequency parameter

w

14

total lift on wing, associated with
a degree of freedom ¢, 1b

reference length

Mach number

moment about a@, associated with
a degree of freedom ¢, ft-1b

integers

dynamic pressure, % pV?

based on €, k=

area of wing surface

semigpan of wing, ft

time

stream velocity

vertical induced velocity or down-
wash

rectangular coordinates

control-point location

chordwise coordinate for replace-
ment loads
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Uy «  distance from control point to
center of segment

Yo=Y—n

vy e distances from a control point to
midpoints of load segments lo-
cated, respectively, to the left
and right of the wing midspan,
referred to ¢

Z=k(x,—§) or k(z;—r,)

a generalized- coordinate of an ang-
ular displacement

B=+/1—7{?

T(tn) vorticity distribution

AP,(u) loading function defined by equa-
tion (26)

Ap(En) pressure difference

5 thickness ratio

€ semispan of spanwise load seg-
ment, 8/20, ft

8 angular chordwise coordinate,
r=—cos8 0

A variable of integration

p air density

@ angular spanwise coordinate,
1=—cos &

] phase angle between lift or mo-

* ment and position

© circular frequency, radians/sec

Subscript:

q denotes a degree of freedom

(for pitch, g=a)

DISCUSSION OF INTEGRAL EQUATION AND METHODS OF
SOLUTION

The determination of the aerodynamic forces on an
oscillating wing is a problem which, in general, must be
handled by approximate or iterative procedures. In the
two-dimensional case one approach to the problem has been
the trensformation of the governing differential equation
and its associated boundary conditions to an integral equa-
tion for which approximate solutions can be found. It is
interesting to note that for this two-dimensional case, an
iterative solution based on the integral-equation approach

preceded a more exact solution based on & series of Mathieu

functions by about ten years.

In the case of wings of finite span, & transformation
similar to that made in the two-dimensional case and leading
to an integral equation can be made. The integral equation
may be derived on the basis of the velocity potential or on
the basis of the acceleration potential. The advantage of
the use of the acceleration potential rests in the fact that
the trailing surface of discontinuity is not explicitly intro-
duced into the problem and the integral equation relates
dircetly the downwash and the pressure difference on the
wing. The disadvantage of the acceleration potential as
compared with the velocity-potential approach lies in the
appearance of a more complicated kernel of the integral
equation, .

INTEGRAL EQUATION

For cdmpressible flow, the integral equation as derived on
the basis of the acceleration potential and given, for example,
in reference 24 may be written as

s ) EEE[M,5 0, § =0 |t
0

where w is the known vertical induced velocity or downwash,
Ap(%,7) is the loading or pressure difference (positive upward)
at & point (£,7) on the wing surface, V is the stream velocity,
and K is the kernel of the integral equation. The pressure
difference Ap(%,7) is related to the bound vorticity through
the equation

W(a:,y,t)

AP Em=pVT(£n)

so that equation (1) is sometimes written with ApEm) re-

211(5:’7)

placed by —=3~- The function K represents, physically,

the contribution to the downwash at a field point (z,y) in the
plane of the wing due to a unit pressure difference at a loading
point (£7) also located in the plane of the wing.

The kernel K is discussed in reference 24 and appears
originally in an integral form as

K[M, —T“’/—, (z—8), % (?/—77)]

— [A—ANF A G A

O —ige-n (e 7
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—timgme T e e =

where o is the circular frequency of the oscillating wing.

In the form given by equation (2), the kernel function
appears as an improper integral whose complete integration
in closed form has not been accomplished. The kernel func-
tion has been extensively treated in reference 24, however,
and has been reduced to a form which can be evaluated. The
reduced form of the kernel given in reference 24 coritains
Bessel and Struve functions and proper nonsingular integrals
which can be handled by numerical means. The kernel con-
tains singularities at y—»=0 and z—#=0, but these singu-
lerities have been isolated and expressed in & form which can.
be handled in numerical procedures. Also given in reference
24 is an expansion of the kernel into a series in powers of the
reduced frequency, which for the present time serves as the
most practical form for application of the kernel.

The solution of equation (1) requires a determination of
the unknown loading distribution Ap(£,9) subject to known
boundary conditions. In view of the complicated nature of -
the kernel, an exact analytical solution of equation (1) does
not seem possible. It appears necessary, therefore, to con-
sider some numerical method of solution and several possible
approximate methods are discussed in the next section.
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SOME APPROXIMATE PROCEDURES

In searching for an approximate means of handling the
integral equation, two approaches seem likely, one involving
an approximation for the kernel and the other an approxima-
tion for the loading. The first of these would involve a re-
placement of the complicated kernel function by a simpler
function which behaves in & similar manner (with regard to
singularities, and so forth) but with which the integral equa-
tion could be inverted and solved analytically for the un-
Imown loading. Such & procedure has been used by Fettis
(ref. 27) for the two-dimensional, subsonic, oscillatory case
and, in part, by Lawrence (ref. 28) for the finite wings in in-
compressible steady flow and by Lawrence and Gerber (ref.
29) for oscillating finite wings in incompressible flow. The
application of such a procedure to the case of compressible
flow would be quite difficult, but is perhaps worthy of further
consideration. ' -

A second possible approach involves leaving the kernel
unchanged and selecting an appropriate expression for the
loading which leaves only certain unknown coefficients to be
determined. By such a procedure the integral equation can
be reduced to a sum of definite integrals and the unknown
constants can be determined by collocation, that is, by forcing
the solution to fit the known downwash conditions at a num-
ber of points on the surface. Although difficulties arise in the
integrations because of singularities in the kernel and the
loading, they can be handled in numerical methods. Various
forms of this procedure have been used quite successfully for
oscillating two-dimensional wings and for finite wings in
steady flow.

A logical extension of this second approach, the choice of
a replacement function for the loading, to the three-dimen-
sional problem would involve finding & means of handling
the definite integrals which arise. It would seem possible
to divide the wing into many small areas and, with an
assumed form of the loading on each area, integrate numeri-
cally over each area to find the downwash at a point on the
surface. Such a procedure would lead, however, to & system
of equations in the unknown constants of at least the order
of the number of areas so that lengthy computations would
arise which would require computing equipment of great
capacity.

In searching for a less cumbersome method, it is natural
to study the possibility of utilizing some of the concepts-of
procedures which have already been developed for the case
of steady flow. Several methods for steady flow seem adapt-
able to the unsteady problem. Among those to be considered
are the procedures of Falkner (ref. 25), Multhopp (ref. 30),
Weissinger (ref. 31), and Schlichting and Kahlert (ref. 26).
A brief discussion of these methods in relation to the objec-
tives of the present investigation is given subsequently.

The methods developed for the steady case by Falkner
and by Multhopp represent attempts at lifting-surface pro-
cedures for handling the integral equation. In both ap-
proaches, the unknown loading is expressed in.terms of a
series of chosen modes of loading with unknown coefficients
to be determined by collocation. In both methods, also,
the double integrations are performed numerically and lead
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to sets of downwash factors. It appears that either method
could be extended to the unsteady case and systematized
through the development of suitable tables of the downwash
factors. For the purpose of extending such procedures to
the unsteady-flow problem, in the present investigation, the
Falkner procedure has been considered preferable since con-
siderably fewer tabulations are required. The development
of a lifting-surface approach based on the method of Falkner
is the main objective of this report. An extension of the
steady-state procedure of Multhopp to the oscillatory case
has been performed by Jordan and some results are given in
reference 32.

It should be noted that W. P. Jones (refs. 2 and 18) has
also treated the problem of determining the aerodynamic
forces on wings of any plan form by using some of Falkner’s
concepts. The method differs from the one to be presented
in this report and pursues a different numerical path since
in the Jones procedure the basic integral equation was
treated on the basis of the concept of the velocity potential.
The use of the velocity potential results in a double integra-
tion over the entire field of velocity discontinuity, that is,
over the wing and its wake. The use of the acceleration
potential, employed in this report, involves & double integra-
tion only over the area of pressure discontinuity, that is,
over the wing surface itself, since no pressure discontinuity
exists in the wake.

Other steady-state procedures mentioned previously were
those of Schlichting and Kahlert and of Weissinger. These
methods represent lifting-line rather than lifting-surface
approaches. In the Weissinger method a single lifting line
is placed at the %-chord position on the surface and the
Enown downwash is satisfied at points on the ¥-chord
position. 'The Schlichting procedure makes use of several
lifting lines. The surface is divided into a number of span-
wise strips of equal chord. A lifting line is placed at the
Y%-chord position of each strip and the downwash conditions
are satisfied at points on the ¥%-chord position of each strip.
Since a lifting-line procedure might be expected to involve
less labor than a lifting-surface approach, an attempt was
made in the present study to extend the Schlichting method
to the case of unsteady flow. The application of the Schlich-
ting approach to the oscillating cese is discussed in ap-
pendix D.

In the following two sections the lifting-surface method
of the present report is developed, first for the case of
subsonic flow and then for the limiting case of AM=1.

DESCRIPTION OF SURFACE-LOADING METHOD FOR
SUBSONIC FLOW

The solution of the integral equation for the case of an
oscillating three-dimensional wing involves a double integra-
tion over the plan form of the wing as indicated by equa-
tion (1):

wleg) 1 i [ soenE 2,5 =0, 5w~ | dn

Of the three main ingredients of the problem—the downwash,
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tho kernel, and the loading—which are related by this equa-
tion, two can be considered as known. The kernel function K
can be evaluated through the use of the forms given in refer-
ence 24, The downwash w(z,y,f) is determined by the
motion of the airfoil. 'This leaves as the only unknown in
equation (1) the function Ap(%,9), the magnitude of the load-
ing at points (%,9) of the surface.

S8TATEMENT OF THE BOUNDARY CONDITIONS FOR THE DOWNWASH

For linearized flow, the downwash function w(z,y,t) can be
determined from the motion of the mean surface of the
airfoil through the relation

et = ) +V 2 ) (36)

where, for harmonic motion,

Fyt)=Fzy)e

so that f(:v,y) is the amplitude of the displacement of the
mean surfece from the equilibrium position. Once an appro-

priate function for f(z,y) is chosen, the downwash is known

and the loading can be determined from equation (1). For

the usual modal type of flutter analysis, for example, f(z,y)

could be found from the assumed vibration modes of the
structure.

Becauso the basic problem of determining the loading
for 2 given downwash as expressed by equation (1) is linear,
it is often convenient to consider the problem separated
into a sum of individual problems, each associated with a
particular selected type of motion or degree of freedom and,
hence, with a particilar downwash function. This implies
that the total downwash can be written as a sum of individual
downwash functions, so that equation (3a) appears as

w(z,y,t)=(a%+V 5%) [filey) +hen+ - . . +hEple

=[w (@) +wazy)+ . . - Fwgley)]e'* (3b)

where w,(x,) is the downwash associated with the particular’

degree of freedom f,(z,5). The basic problem of this report
" is then the determination of the loading Ap,(£,4) associated
with any one of the downwash factors w,(z,7).

TREATMENT OF THE LOADING

In addition to the downwash conditions set by equations
(3), the loading Ap(%,) must satisfly various conditions at
the edges of the plan form. In the chordwise direction, for
subsonic flow, the loading must be infinite at the leading
edge and vanish, in accordance with the Kutta condition,
at the trailing edge. In the spanwise direction, the loading
should become zero at the wing tips.

Series expression for the loading.—As a first step in the
determination of the unknown loading, it is assumed that the
function Ap(£,5) can be expressed in terms of a series of both
spanwise and chordwise pressure or loading modes, so chosen
as to satisfy the edge conditions just discussed and contain-
ing arbitrary coefficients to be determined. The spanwise

975

modes are expressed in terms of the variable 5. It is con-
venient to express the chordwise pressure modes in terms of
an often used variable 6, related to { and based on the
circular cylinder enveloping each chord as diameter and
shown by sketch 1 and in equation (4).

4

4

qu

Sketch 1.
E=fmi(n)—b(n)cos 6

@)

where

b =5 ul) ()]

In terms of the variables 6 and 75, the loading associated
with a particular downwash distribution we(2,y) may be
expressed in terms of the summation of pressure modes and
written as

Ap, (Em)= Zb( )V-S‘“—n cot = (am+ao177+a02772+ O+
sin 6(ady+afn+-abr*+ . . . )-sin 20(ad+adin+
O+ (50)

where the superscript ¢ identifies a particular downwash.

The series form of the loading given by equation (5a)
satisfies the Kutta condition (Ap=0 at the trailing edge)
and has the desired type of singularity 1/yz where z is
measured from the leading edge. The terms in 5 are of such
a form as to cause Ap(&y) to become zero with infinite slope
at the wing tips. The use of this series form for Ap(£,n7)
means the pressure distribution is essentially synthesized by a
series of chosen pressure modes and the values of @, deter-
mine the contribution of each pressure mode to the final
pressure distribution.

Equation (52) can be written in more concise form, as

8oV & &
22()22 m (&)gm(ﬂ)

n=0 m=0

Ap,(8,m)= (5b)
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where
- fo(®)=cot g

fu(§)=sm nf
=7e—r

(For symmetrical motions of & wing, w,(z,y)=w,(x,—7v),
the odd terms in 5 need not be retained. For unsymmetrical
motions, w,(z,y)=—w(z,—y), the even-powered terms in g
do not have to be retained. In the numerical examples to be
given in a later section, symmetric motions are considered.)

Tlustrative expressions for the force and moment.—The
specific problem is the determination of the coefficients g x
in equation (5a) or (5b) and, as has been indicated, a par-
ticular set of values for a,, must be found for each down-
wash w,(z,y). Once a set of values for a,, has been deter-
mined, & particular loading Ap,(£y) is defined by equation
(5a) or (5b). This expression for Ap.(%,4) gives the pressure
distribution and can be integrated to obtain various desired
section forces or total forces. For example, total lift and
moment coefficients associated with the motion f,(x,7) can be
found through the relations

(n=0)
(,n ;,50) " (6)

gm (77)

=Gy fAPq(Em)dEdn L mw

and

M, . :
=G5 fs [t—ann@nia v

where the moment is obtained about a spanwise axis ¢=a.

By substituting equation (5a) into equation (7a) the
following result for the lift coefficient is obtained which is
valid for any plan form:

Cri=2 (1605+8afyHag H2aty H20Si o) ()

The expression for the moment about the axis considered
must be determined for each particular plan form. The
moment coefficient will take on a form similar to equation
(8) but with constants determined by the plan-form
geometry. Forarectangular wing, for example, the moment
coefficient for moment about the midchord (a==0) is

Cr,=—%5- (lﬁaoo+4am+ +8%+2an+aa4) )

The equation for the moment coefficient for a delta-wing
plan form is given in appendix C. :

REPLACEMENT OF THE INTEGRAL EQUATION BY A SUMMATION
OF DEFINITE INTEGRALS

In the rest of the analysis, it will be convenient to deal
with a general downwash w(2,y) and to drop the subscript
and superseript ¢. In order to evaluate the coefficients @,m
for a particular downwash w,(z,y), the first step involves the
substitution of the loading series (eq. (5a)) into the integral

equation (eq. (1)) to give

w(;iy) é‘; Zb fw/S’TnE I:cotg (doo+-aon+ae*+ . . )+

Sill 0((1«10+a«111]+au172+ . .) -I—sin20(am+a.gm+

car' . )+ K[ M o0, ) |dedn
| (10)

or if the form for Ap(£,n) given by equation (5b) is used, the
following is true:

wieg) 4327; 2P f [ 1@ E| M, 5 -

=0 m=0Q
5,5 @—n |dt dn a1

A significant step toward the desired solution of the in-
tegral equation has now been arrived at because equation
(10) or (11) is no longer an integral equation, that is, an
unknown quantity no longer appears under an integral sign.
Instead, the downwash w(z,y) is now given by a summation
of definite integrals multiplied by various unknown constants
@am- These integrals are of the form

[ Jeorg v E] 2ot oy dt an- |
8

ffsin nf g™/ —n? K[M, % (@—8), % (?/“‘ﬂ)]dé i (12)
8

The numerical evaluation of these integrals is an impor-
tant part of the labor of the present method, for once their
values have been calculated, one can proceed immediately
to the determination of @, and, therefore, to the determi-
nation of the pressure distribution. In the method under
consideration, the required integrations are performed nu-
merically. Because the chordwise and spanwise integrations
are treated differently, they are discussed separately in the
next two sections, the chordwise integration being discussed
first.

TREATMENT OF THE INTEGRATION IN THE CHORDWISE DIRECTION

For the purpose of performing the chordwise integration
it is convenient to replace the right side of the integral equa-
tion by a sum of separate integrals, each involving a par-
ticular chordwise pressure mode and in which the spanwise
(») and chordwise (£) integrations are separated. For this
purpose equation (11) may be written as

2 20 5 o [ a0 T+ Z0un [ gL |
13)
where
L= [ AOE[M 50 50— & ()
and

L[ fOE[Mpe-dpa—n|& )
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Remarks on methods of performing the chordwise inte-

grations,—One could at this point evaluate the integrands
of I, and I, at small intervals of £ and integrate by numerical
means. This procedure would be difficult and tedious, how-
ever, since the kernel contains singularities and involves &
large number of parameters and since the integrations would
have to be carried out for many values of ». It is desirable
to seek a simpler, but more approximate, approach which
would be less laborious.

In the present analysis, an approach developed by Falkner
in reference 25 (and discussed more fully in ref. 33) for the
steady case is used which greatly reduces the amount of
labor. In essence it is assumed that in the integrals I,

and I,, the loading modes fy(f)=cot % and f,(f)=sin né

can be replaced by an arbitrary but small number of re-
placement loads which are chosen in order to satisfy some
integrated properties of the continuous loading. The use
of this assumption will result in the integrals I, and I,
appearing finally as summations in the forms given by
equations (20a) and (20b).

The use of a set of individual loads in performing the
chordwise integrations and the procedures for evaluating
them introduce approximations which are somewhat arbi-

trary, These approximations and their implications will

be discussed later as they arise. They correspond to the
" assumptions made by Falkner and have been used in the
present investigation for practical reasons. With high-
speed computing equipment available, some of the approxi-
mations in the development which follows might be avoided.
It can be stated, however, that, in the cases considered, the
end results seem to be satisfactory.

Celculation of the replacement loads.—Ir calculating the
values of the replacement loads, it is first required that the
sum of the individual loads associated with a particular
chordwise pressure mode must equal the integrated value of
the continuous chordwise loading. If the continuous dis-

tribution is replaced by j replacement loads and G, and’

G,, denote loads associated, respectively, with the modes
cot 6/2 and sin n6, this equivalent load condition leads to
the following set of equations:

+ G,o=f'cot % sin 0 do=n (152)
resl 0 .
and
i G,,= f sin nf sin 6 d&'=g (n=1)
ye=] [1}
x (15b)
il G,,,=f sin 78 sin 8 d¢=0 n>1)
e 0

The use of equations (15) imposes one condition on the
replacement loads G. However, equations (15) contain j
unknowns; therefore, at least 7—1 additional equations in
terms of @ are needed. In the present method the addi-
tional equations are obtained by requiring the downwash
produced at selected points on the chord by the individual
loads to equal the downwash due to the continuous load
distribution. In imposing this condition the two-dimen-
sional kernel function X is used instead of the more compli-
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cated three-dimensional downwash factor defined by equation
(2). The relation between the two- and three-dimensional
kernel functions is given by the following equation:

| 145 (x-g)]% " &[m5 60 50— |d

where I—K[M T—wf (:z:—E):I is the two-dimensional kernel.

The use of the two-dimensional downwash factor at this
point is an intermediate step used only for evaluating G.
In satisfying the actual downwash on the wing in the next
section the ealculated replacement loads are used with the
three-dimensional kernel function. This intermediate use
of the two-dimensional downwash factor implies that the
areas close to & point contribute the major portion of the
downwash at the point.

The j—1 additional equations in terms of G can be written

_ by selecting 7—1 positions, or control points, on the wing

chord denoted by z, at which to equate the downwash
produced by the individual loads to that produced by the
continuous loading. Although the lift conditions (egs.
(15)) did not require any assumption regarding the location
of the replacement loads, for the purpose of employing the
downwash condition such an assumption is necessary. In
selecting this location an interpretation of the meaning of

* the replacement - loads—G is somewhat—arbitrary——The

replacement loads & can be considered as loads distributed
over & certain portion of the wing chord, or they may be
considered as concentrated loads operating at particular

' points on the chord. If the concept of a load distributed

over an area is taken, then the distance to the downwash
point is physically identifiable as some average distance,
which for this particular case is measured from the center of
the load area. If the concept of the concentrated load is
used, then the distance is measured from the point of appli-
cation of the load. In either case, a reference point =, is
selected as the point of application of the load & so that the
distance to the downwash point becomes z,—=z,. This
distance is then used in developing the j—1 downwash
equations for the determination of G.

For the cot 8/2 term of the loading series, the downwash
equations are

il G,OE,,=fr cot g sin 6 K¢ df (16a)
= o

and, for the loading sin 78, the downwash equations become

il‘, G,,,E,,=f' sinnfsin 0 K. d (16b)
r= 0

where one such equation is obtained for each control-point

location z, selected. The functions K,, and K in equations
(18) are defined as follows:

and
Ka=K(M,Z)
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and represent the two-dimensional downwash factor tabu-
lated by Schwarz (ref. 34). In these functions Z,=k(z,—=z,)

and Zy=Fk(z;,—%) where Ic=—~b—; and where a semichord b has

been chosen for convenience as a reference length.

It should be noted that the integrands in equations (16s)
and (16b) become infinite at #=2 and the integrals must
be carefully treated. The method of handling these integrals
is given in appendix B.

Other conditions which would not bring in consideration
of the two-dimensional kernel could presumably be used: for
determining values of G. For example, in place of using the
downwash conditions, 7—1 additional equations could be
written for each chordwise term of the loading series in which
the first and higher (through j—1) moments of each load @
could be equated to the corresponding moments produced
by the continuous loading. By such a process, however,
the loads @ would not be a function of either frequency of
oscillation or of Mach number. Through the use of the
downwash conditions, some effects of both frequency and
Mach number are included at this intermediate stage.

Illustrative equations for the loading functions.—In apply-
ing the method of this report, three chordwise pressure
modes have been retained. The continuous distribution in
each mode has been replaced by four individual replacement
loads.

In order to evaluate the replacement loads, the lead
established in the steady case with regard to locations of
control points and loads has been followed. The loads are
assumed to act at the %-, %-, %-, and %-chord positions, and
the downwash conditions are applied at control points
midway between the load stations, that is at the %-, %-, and
%-chord positions. Replacement loads based on these
chordwise positions have been calculated for M=0, 0.5, and
1.0 and are presented in table I.

One setb of replacement loads must be determined for each
chordwise pressure mode. For the mode involving cot §/2,
the values of G,, are determined from the following equations:

x 3
Gt Gt G+ G.o=f cotg- sin 0. df==
o -t

G10Eu+ Gml_fla"“ GaoE13+ G£14=Lr cot% sin 8 Eg de
- (17)
GmKl:n‘l‘ GZDKZQ+ ngzs‘l' Gu}Ez{:J; 0013% sin 8 Ez& do

Gt G Rt G Kot Qo Bo— fo " oot sin 6 Koy @

where the functions K used here and in equations (18) and
(19) are defined after equation (16b).

The first of these equations imposes the lift conditions
stated by equation (15a2). The remaining equations apply
the downwash condition of equation (162) at each of three
control points; the second equation, for example, states that
at control point 1 (at xz,==z; in eq. (16a)) the downwash
produced by the four loads at z,.1, Zyu2, ZTrms, 2nd z,., must
equal the downwash produced at control point 1 by the
continuous cot 6/2 loading.

A similar set of equations can be written for each chordwise

| pressure mode by using equations (15b) and (16b).

_the kernel.
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For
sin 6 the set of equations is

Gt Gt G- Gu"—‘ff gin® ¢ d0=g
)

Guzu‘l‘ G21K12+ GSIKIS'I" GuEu=J;r sin?g EE do |
- (18)
G Ko+ Go Koo+ G Kot 041E24=J; sin? 0 Ky df

Ko+ G Kot G Ks+ GnEu:j;r sin? § Ky dBJ

and for sin 26,
Gt Gyt Oy -G f " sin 0 sin 20 do=0
0 -
G12K1+ GnEz‘l‘ GszEa'i‘ Guz4=ﬁr sin @ sin 2§ K;E ds

- (19)
Gng_al‘l‘ ann-l“ GnK_.m'l‘ GHE;‘:f SiD. (] sin 20 Kgg d0
0

sin 0 sin%EEdGJ

0

GuEs;"I“ sza‘l' GasK;a‘l" GQK;A':

Use of the replacement loads & in the chordwise integra-
tion.—Once the replacement loads @ have been determined,
by solving equations (17), (18), and (19), continuous integra-
tions indicated by equations (14) can be replaced by summa-
tions of the products of the loads G and the three-dimensionsal
kernel function as follows:

Io_b’i_} GoE] M2 (o)1 (y—n):l (20n)
and I, (eq. 14b)) becomes
w w
L=bé1 a,,K[M, 2 (@) (y— 7,)] (20b)

where the factor b arises through use of the substitution
f=—>bcosd. In effect the continuous integrations have been
represented by the replacement loads and & mean value of
These expressions may be substituted into
equation (13) as follows:

'w(%t;y) 4PV2222¢ZM "

real nmQ m=0

J;mngm("l)KI:M: 7 (z—2,)s —;’7 (y— 1;)] dn (21)

leaving only the spanwise integration to be performed.
. SPANWISE INTEGRATION

For the purpose of dJscussmg the spanwise integration,
equation (21) may be rewritten in simpler form as follows:
w@y) f AP, (n)K[M, (o2 (y— ,,)] dn

81I’g =1 span V (22)

where

AP, (1)=40V* 335 Gunlrafn(n) (230)

=() |-
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or

AP, (1) =4pVF—7 [Gro(dootor14-Goar®) -+-Gor a0+
41117+G12777)+Gr2(a~zo+aam+¢12217’+ . -H‘ RN |

Equation (23b) may be seen to correspond to the original
form of the loading Ap(f%) given by equation (5a). In
equations (23), however, the continuous chordwise-loading
terms cot 6/2 and sin n6 have been replaced by the loads
Gy and G,,.

The integration of equation (22) may be handled by
several procedures. A straightforward numerical integration
could be performed for each value of x, by evaluating the
kernel K at a number of spanwise stations. However, the
kernel K contains some difficult singularities which have to
be carefully considered. Moreover, in order to make tables
of these integrals for general use, tables would have to be
made for every aspect ratio, sweep angle, Mach number, and
reduced frequency. In order to facilitate the development
of tables, it is desirable to make use of a mean-value integra-
tion which involves integrating the kernel over a short
segment of span and using the value of AP, at the midpoint
of the segment. This method was followed in the present
analysis and has the advantage that the integrals have to be
tabulated only as functions of Mach number and reduced
frequency.

The downwash at a point (z,y) due to a small element of
span of length 2¢, the center of which is located at =z, and
N=Yn, is )

Aw(y) 1 7
TV 8¢ AP (y) Foe @4
where .
Fo= .Hﬁ'K[M, A S (y—n):l dn  (258)
Iy—¢ V V

and where AP, (yy) refers to the value of AP, at the mid-
point of the span element over which the integration extends.

The integral given by equation (25a) is of central impor-
tance in the present method and represents a ‘‘downwash
factor” giving the downwash at a point (z,7) due to a unit
pressure loading acting over a span element of length 2e.
The value of the integral depends only on the relative
distance of the element from the point (x,%) and not on the
spanwise location of the element on the wing. For con-
venience of calculation, therefore, it is desirable to perform
a coordinate transformation to the center of the element,
so that the integral appears as a function of distances from
the point (z,).

In order to perform this transformation, let 4’=5—yy in
equation (25a) where 5’ is a new spanwise variable. Equa-

(23b)-
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tion (25a) can then be written as _
’ F,N=J:!K[M,%(x—x,),%(y—yy—n'):ldﬂ'
= | K[ M pe—a)pa—n]o e

where y’=y—yx» and where 9’ and %’ are shown in sketch 2.

yr")

Sketch 2.

SELECTION OF REFERENCE LENGTHS

It is convenient at this point to choose certain reference
lengths in both the downwash factor F,y, defined by equation
(25b), and in the loading AP,(yy), defined by equations (23).
In the case of the loading, the wing semispan s is chosen as
& convenient reference length. If a new variable p=yy/s is
introduced, the loading AP,(yy) can be written as

AP,@>=4:spV’,,1‘{:0 gamgm@) G (26)

gn () =p"/1—p?
and where p is measured to the midpoint of the spanwise
segment. _

In the case of the downwash factor F,y, the length ¢ is
taken as a reference length. The variables z, z,, 7/, and 3’
are then considered in & new sense to mean nondimensional
quantities obtained by dividing the dimensional distances
by the length e. The downwash factor F,y then appears as

where

_ 1 - -
Foy= ef _ KM ke—2) k' —a")]dn’
where

T €W
k=%

The use of ¢ as a reference distance introduces a factor 1/¢® in the kernel (eq. (2)) as follows:

K[M,E(:c—;s),zz<y_,,)]=_1e§ tim %e_m,_g) f

- eg MR G E]
dn
~o N (y—n)* B2

@7

Equation (27) can be used to define a nondimensional kernel function K by writing

KM, Ea—), k' —n)= K [M,E@—2), k' —)] (28)
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so that K in equation (28) corresponds to the quantity in
braces in equatiéon (27). "

With the use of equation (28), the downwash factor F,N
appears a8

Fy— f K [M,F(o—), by —n)] d

Finally, & nondimensional downwash factor F,y can be de-
fined as

FomeFo= [ KDL Ha—0) By~ (29)

FINAL EXPRESSION FOR THE INTEGRAL EQUATION

Equations (26) and (29) can now be substituted into
equation (24) to write a final expression for calculating the
downwash at a point (z,y) on the wing. If the downwash
due to all the span elements over the wing is summed, the
total downwash becomes

V@Y _ L AP () For (308)

Vv Saqe ST 45

By using the expanded form for AP,(u) given by equation
(26), the total downwash can be written as (for e=s/20)

w(%v;y) 40 EPIDIDD z CanGrngn () Fore

(30b)
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The only unknowns in this equation are the coefficients
Gax- By selecting a number of control-point locations (z,3)
at least equal to the number of a,,’s desired, equation (30b)
can be written for each control point. Thus, a set of simul-
taneous equations is obtained in terms of the coefficients
@nm Which can then be calculated.

The next section is concerned with the calculation of the
downwash factors F,y which have been defined in equation

29
#9). DETERMINATION OF DOWNWASH FACTOR F .

The value of the downwash factor F (eq. (29)) for the oscil-

" latory, compressible case is not available in the literature

and consequently must be derived. However, the kernel K
has been discussed in detail in reference 24, in which several
forms of K are given. One form, as given by equation (20)
of reference 24, would require & numerical integration in
order to obtain ¥, since K cannot be integrated in closed
form. Another form of the kernel, an expansion in terms
of the frequency parameter %, is given by equation (54) of
reference 24 and is the form employed in the present analysis.
In reference 24, a discussion is given of the accuracy of the
frequency expansion. It is indicated that for moderate
values of % and"M the series is quite good for small distances
z—z, and ¥’ —7’. As k and the distances increase, the
series deteriorates. Overall accuracy is not seriously af-
fected, however, since the major contribution to the down-
wash at a point is from the nearby points on the surface.

Accordingly, the series is integrated term by term to obtain an approximate value for F. Several of the integrals aro,
however, improper, due to the existence of singularities in the integrand, and the concept of the principal value or finite part

must be utilized.

for an expansion to the 5th power of F is given in equation (31)

(See, for example, ref. 35 for a discussion of the finite part of integrals.) The results of the integration

(In presenting the expression for the downwash factor I,

it is convenient to drop the primes on the quantities #’ and y’ and the bar on the reduced-frequency parameter k. In the
following expression, therefore, x, ¥, and & will be considered to denote the dimensionless quantities referred to e unit longth.)

"
F7N=J_1K(x0)y_ ﬂ)dﬂ

xo+R2 iklo 13(’.!/ 1)+R2
8 By D)L B, T op

R
2t (v—5+ 3 )+F (1) g gEE

—p—ik, ( T+ Ry
- ﬂ’o(!/'l‘ 1) xo(y_ 1) B

BM)  B(y=1)+ By, 3M*—
% CCByID+ER ' 2

To+-Ra T, Iy

{23“—]—2111—2}32 log

log L(y—H):l B (y—1) [log B(+B“

M+1 M’%I Bly—D)+R,
B B EByTDTR

S

y—1)

2 (gD R (DR g 320~ M6 (g7 1) —

20M? Bly—1)+R,

26%(y—1)* log W+2B“(y+l)3 log (M+1) (y+1)

(M24-4)2,2 log +

B Bly+1)+E,

@—4M*—4MY)z, [(y—l)Re—(y+1)Rd+B" [(y+1)*—=(y—1)? (—27+—+— w1 J+26%(y— )310gk(y D

289(y-+1)° log KU } +36-0ﬁ8{ — 8 (5-+ M)z, —

15M
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BT B, M BBy +12~
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where

=V TG

Ty=2—10,

By=~z2+8(y—1)?
y=0.5772157

where z,=2z—z, is the distance from the line of integration
to a control point, made nondimensional by dividing by e,
and is positive for locations of the control point behind the
line of integration. The distance y is also nondimensionalized
by e and is positive to the right apd is measured from the
center of the integration segment as previously discussed.
The reduced frequency % must also be based on the span seg-
ment e and is accordingly

k==

Of course the number of spanwise segments N can be
arbitrarily chosen. In general, the more segments taken the
more accurate the result. Falkner (vef. 25) has used e==5/20
for most cases. As an exsmple, the layout for & rectangular
wing as used in the numerical example in appendix A is shown
in figure 1.

The next section of the report is concerned with the appli-
cation of the surfaceloading method to the special case
M=1.0.

THE SURFACE-LOADING METHOD FOR SONIC FLOW

The problem of calculating the forces for the limiting case
of & wing which is oscillating in sonic flow is in general the
same as for a wing at subsonic speeds with two exceptions.
Tirst, for the case of a sonic trailing edge, that is, when the
trailing edge is perpendiculer to the flow, the satisfaction of
the Kutta condition (Ap=0 at trailing edge) is no longer
necessary snd another form of the series expansion for the
loading Ap is applicable. (For the subsonic-trailing-edge
case, i.e,, when the trailing edge is not perpendicular to the
flow, the loading series would, presumably, be of the same
form as already shown for the subsonic case as given in egs.
(5).) The second difference between the sonic and subsonic
cases lies in the form of the kernel K, which is used for the
calculation of the downwash factor F as defined in equation
27).
M=1 has been performed in reference 24, but the integration

=10
T 1]
ge— {-1Control points
Le T -0
3. f_ | TIntegrotion | 4 7
8 oreos
%c ——N7
Bo— 2 5 8
ecé
z 3¢ 3 6 9
56— -
] ] 1 t I+IO
~20 4 8 12 16 +20
L3
Fiaure 1.—Typical layout for lifting-surface method applied to a
rectangular wing.

The modification of the kernel K to the limiting case
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of the kernel with respect to the spanwise variable % must still
be performed and is presented in another part of this section.

The present method is based on the usual assumptions of
linearized theory and the use of this approximate th eory may
be open to question. However, for the very thin wings now
being used on ajrcraft, it is felt that the first-order effects as
given by linear theory constitute the major effects for unsep-
arated flow and adequate solutions will be obtained.?

For the case of a sonic trailing edge the form selected for
the loading is

AZ")_'S_ 772 ‘\/—:f: (000+aﬂl77+002772+ )+
'\‘E—flo(alo_.}—allﬂii'alﬂﬂz'i' . e )+(E‘—fu)“(azo+
R S WA ] (32)

or.
e [;3 > canfult J‘u)gm(n)] (33)
where -
1
Falt—fi)=(E—f1)" F n=0,1,2, ...)
and

In()=1"&—7

This series contains some aspects of the supersonic case
as well as the subsonic. For instance, as in the supersonic
case, the loading is not zero at the trallmg edge; whereas,
as in the subsonic case, the loading becomes infinite at t.he
leading edge.

TREATMENT OF INTEGRATION IN CHORDWISE DIRECTION

By following the scheme used for M<1, a set of simul-
taneous equations for the chordwise replacement loads is
obtained corresponding to equations (15) and (16).

In calculating the values of the replacement loads, it is
convenient to choose the semichord at some spanwise station
as a reference length, as was done for /<1, and to perform
a coordinate transformation such that the origin lies on the
wing midline. By such a transformation a new chordwise
loading function f,(£) can be defined as

1
fu($)=(1+$)n-§ (TF01 112: .. )
where £ is now considered as a dimensionless variable based
on & reference semichord and measured from the wing
midline. In terms of this new variable ¢ the equations
expressing the loading conditions (corresponding to egs. (15)
in the subsonic case) appear as

Fo.=[" aro™ia (30

3 8ome conditions which must be met in the linearization of the yoverning equations In the
neighborhood of Af=1 have been presented by Miles (ref. 36) and Mollo-Christensen (ref. 37).
As stated by Miles, 1t is required that the conditions 5, Afs, K3, RM3<<1 be satisfled and,
in addition, that one or more of the following conditions be met:

[AL—1[>>a0

1
B>an To>un

where & {3 the thickness ratio, M s the AMach number, & i3 the reduced frequency, and A is

tho aspect ratio,
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and for the downwash condition (corresponding to egs. (16)
in the subsonic case)

ga.,fff_’: (148" TR et (35)

where the functions X,, and K,; designate
K=K [M k@)1

and .
Eq=EK [M}(z—5]aa1

and are the two-dimensional kernel as defined by equation
(B23) of reference 24 and given in appendix B by equation
(B9). Unlike the two-dimensional kernel for the subsonic
case, these functions are not tabulated for A/=1 and hence
must be calculated.

In expanded form and for the nth chordwise-loading term,
the set of simultaneous equations is

Glu+G2n+ G3n+ Gln=fjlfu(£) df

Gluzl+G2uE2+G3nB_:rla+G{nKM__“f_’:f n(&) KIE df
- (36)
GluE2l+G2uEm+G3nE23+GhKM=fj:f (D Ky dt

Gru B+ OBt Gon s+ QB [ 1,0 For ]
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A set of simultaneous equations as given by equation (36)
must be formed for each value of 7 and solved for the associ-
ated values of G.

As in the case of subsonic flow, the integrands of the inte-
grals of equation (36) become infinite at £=x,. The evalua-
tion of these integrals is discussed in the latter part of ap-
pendix B.

At sonic conditions, a disturbance cannot be propagated
upstream, so that the labor of computing the loading fune-
tions is reduced as compared with the case for M<1 since
the downwash factors do not have to be determined and
summed for conditions where the control point is upstream
of the integration area.

As an example, if the loading functions are assumed to
act at the ¥%-, %-, %, and-%-chord positions and the control
points are located at the %-, ¥%-, and ¥-chord positions, then

Ku=Kn=K14=Kas=Ku=Ks4= 0

since the terms represent downwash factors for control
points. shead of the loading stations. Thus, the set of
equations becomes triangular and can be solved by successive
substitutions.

TREATMENT IN SPANWISE DIRECTION

The integration in the span direction is carried out in the
same manner as was done for M<1, that is, the wing is divid-
ed into many small segments; and, with the load Ap assumed
to be constant across the segment, the integration is perform-
ed. The kernel for this case is given by equations (47) in
reference 24. However, it is not possible to integrate this

expression for the kernel in closed form and, as was done for the cese when M<(1, the kernel was expanded in powers of
the frequency parameter k and mtegrated term by term. The concept of the principal part of a finite integral was used.
The form of the integrated series is given in the following equation:

1
Faor— f KM E e = Vares d'

ik, B

lhﬂ
— a{yil yll 7, Vo [(OHD === 24033[(’-”“)‘—(1/ 79— 2688,,4[(y+1)’—(y—1v]+

ks

W[(y+1)°—(y—1>9]}+e—f=o(am(y—i—l—27}ﬁ>+§[z(1 —Tlog 222}

2z,\_%,°

—1 y+1)

(14 Tog o7+ (g g ty— -+ 2+ —20r—0) [ s (= (-0 =17 }+

] e 14—t (55— +1)4y+1)55z W=D oy 41y (1) log 2
S1(y-+1° og (y-+1)*— (=1 log —1—F 5 =107 +ie{ et — =1+
(+D°~—1°_ (y+D'—(y—1)7, '

480z, 8,064z, '1920 (y—l 'y+l>}> : @0

where the parameters z,, ¥, k, and v are identical to those employed in equation (31).
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REMARKS PERTINENT TO THE SURFACE-LOADING METHOD

In previous sections of this report, some of the approxi-
mations involved in the present lifting-surface method have
,been discussed. It has been pointed out that certain arbi-
trary features arise in performing the numerical evaluations
of the integrals, particularly with regard to the chordwise
integrations. The assumptions that have been made in this
connection include the replacement of the continuous chord-
wise loading by a number of individual replacement loads,
the use of the two-dimensional kernel function in evaluating
these loads, and the choice of a set of load stations at which
the replacement loads are assumed to act. In addition, a
set of control points must be selected at which the governing
downwash conditions are to be satisfied. In the actual
application of the procedure these features give rise to certain
problems which are discussed in the following. paragraphs.

CONTROL-POINT AND LOAD-STATION LOCATION

No attempt has been made in this report to determine the
most favorable location of the control points or the optimum
location for the stations at which the replacement loads are
assumed to act. TFor such a study, systematic tables of the
downwash factor are desirable and when these tables become
available, it will be much easier to evaluate this aspect of the
problem. In the present study, such tables were not avail-
able, and the positions of the control points and the means of
distributing the loading selected were the same as have been
used for the steady case. Ttisfelt that, atleast for the simple
rigid modes considered in the present study, the location of
the control points is not critical. For more complicated
modes of deformation other locations and additional control
points might be necessary. This question is worthy of
further study.

EFFECT OF TAPER

In the calculation of the distribution of the loading across
the chord, it is necessary to select a value of the reduced

5
I N
Present analysis
————— Lowrence ond Gerber (ref. 29)
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frequency lc=l;,——w to be used in calculating the two-dimen-

sional downwash factors K,, and K, in the integrals in
equations (16). For a tapered wing, the problem arises as
to what span position to use to obtain a reference chord for
calculating k.

In relation to this effect of taper, as a part of the present
investigation, two separate calculations were made for the
case of a 45° delta wing. In one case, the root chord was
used as the reference chord, whereas, in the other, the chord
at the midsemispan was used. It was found that the final
results obtained for the pressure distribution and, conse-
quently, for the lift and moment from the two calculations
were almost identical. On the basis of this one test case, it
may be inferred that the location of the reference chord is
not an important factor. In the remainder of the delta-
wing calculations presented in this report, the chord at mid-
semispan was used.

DISCUSSION OF SOME APPLICATIONS OF THE METHOD

This section is concerned with a discussion of the results
of calculations which were based on the lifting-surface method
discussed. Calculations have been made for both rectangu-
lar and friangular wings and comparisons of the results
have been made with existing theoretical and experimental
results where possible.

RECTANGULAR WING

In order to furnish a basis for comparison of results of the
method with existing theory, calculations have been per-
formed at M/=0 for a rectangular wing with an aspect ratio
of 2 pitching about the midchord for various values of the
reduced frequency k. The results are compared with the
results given by Lawrence and Gerber (ref. 29) and are
shown plotted in figure 2. In figure 2 (a) the magnitudes
are plotted, and in figure 2 (b) the corresponding phase angles
are plotted. Excellent agreement is obtained for both the
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Fiaure 2.—Variation of lift and moment with reduced frequency k} for a rectangular wing oscillating in pitch about its midchord.
A=2; M=0.
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magnitude and the phase angle. Although both the present
method and the method of Lawrence and Gerber are approx-
imate, the good agreement between the results promotes a
feeling of confidence in both methods. It should be noted
that the two methods are not similar and contain entirely
different approximations.

To obtain some effects of Mach number, calculations were
made for the same rectangular wing with aspect ratio of 2
pitching about the midchord for a range of Mach numbers
at o constant value of £=0.22. Results are shown in figure
3. Included in the figure are the results of two-dimensional
calculations. The magnitudes of the lift and moment are
given in figure 3 (a) and the corresponding phase angles are
given in figure 3 (b). Calculations for three-dimensional flow
up to and including 3/=1 were made by the use of the
surface-loading method. The results at supersonic speeds
were obtained from reference 12. The variation with Mach
pumber for both the lift and moment is approzimately that

which would be predicted by use of the factor Yy1—34* up
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Fraure 3.—Variation of lift and moment with Mach number for a
rectangular wing oscillating in pitch about its midchord. A=2;
k=0.22.
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to M=0.7. Both the moment and lift increase at M=1
and then drop off again at supersonic speed. Note that the
two-dimensional lift coefficient has the same shape for the
range up to M=0.7 and that application of the aspect-ratio

correction factor ‘TA:E=% would apply fairly well. No such

simple factor exists for the phase angles, and it would not
be possible to correct two-dimensional results for finite span
effects.
TRIANGULAR WING

Figures 4 and 5 present results for a delta wing with
an aspect ratio of 4 oscillating in pitch about the midchord.
In figure 4 is shown the lift and associated phase angles
plotted against the reduced frequency k for AM=0. Resulis
of the present analysis as shown by the solid line and those
of Lawrence and Gerber (ref. 29) as shown by the dashed
line are compared with some experimental results (indicated
by the circles) obtained by Sumner A. Leadbetter and
Sherman A. Clevenson at the Langley Aeronautical Labor-
atory. It is noteworthy that the results of the two methods
agree rather well, even with respect to phase angle.

In figure 5 a corresponding comparison for the moment
and its associated phase angle (for the same wing and for
the same conditions as in fig. 4) is shown plotted against
the reduced frequency k. Results of both analyses are in
substantial agreement with respect to the magnitude of the
moment. With regard to the phase angles, a significant
difference between the results of the two theories occurs,
although both theories indicate the same trend. The source
of the difference can not be explained at the present time and
will have to be resolved by further calculations and experi-
ments.
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RESULTS OF MULTIPLE.LINE METHOD
Figure 6 shows results of calculations for a rectangular
wing with an aspect ratio of 2 at A/=0 based on the multiple-
line method described in appendix D. Results of the line
method approach those of the surface-loading method when
o fairly large number of lifting lines and control points are
used. These results are discussed more fully in appendix D.

CONCLUDING REMARKS
The purpose of this report has been to present and describe
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T1gure b.—Variation of moment with reduced frequency %k for a
delta wing oscillating in piteh about its midchord. A=4; M=0.
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in detail & method for calculating the loading on a wing of any
practical plan form which is oscillating in & subsonic or sonic
stream. The method is presented in general form and some
results of application are discussed. A sample calculation
for o specific case is presented in an appendix. The method
may be used for calculating the loading on elastic wings as
well as on rigid wings. This feature makes the method
adaptable to flutter calculations since it is possible to calcu-
late the loading for the various modes usually assumed for a
normal type of modal flutter analysis. The method can also
be applied in principle, at least, to the combined aero-
dynamic and structural problem in which the flutter char-
acteristics are obtained directly by the use of structural and
aerodynamic influence coefficients.

The procedure used is based on linearized theory in which
the usual assumptions of linearized flow, such as small
thickness ratio of the wing, inviscid fluid, and so forth, are
necessary.

The method has been found to give good agreement with
existing theory and experiment for low subsonic Mach num-
bers for both rectangular and triangular wings. Results for
high subsonic Mach numbers and a Mach number of 1 fit in
well with theoretical results for supersonic flow but require
further verification by comparison with experiment.

In addition to the presentation of the lifting-surface
method, a multiple-line approach is included in an appendix.
Results of the line method approach those of the surface-
loading method when a fairly large number of lifting lines
and control points are used.

It is realized that several variants of the procedure may be
made and may be desirable for routine or systematic calcula-
tions, particularly in view of the constantly increasing
capabilities of automatic computing equipment.

LANGLEY AERONAUTICAL LLABORATORY,
NaTioNAL ADVisSorRY COMMITTEE FOR AERONAUTICS,
LaweLey Fiewp, Va., March 14, 1956.
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Figure 6,—Variation of lift and moment with reduced frequency %k for a rectangular wing oscillating in pitch about its midchord.
Comparison of results of multiple-line method with results of surface-loading method. A=2; M=0.



APPENDIX A
NUMERICAL EXAMPLE OF THE LIFTING-SURFACE METHOD FOR A RECTANGULAR WING
(A=2; k=0.22; M=0.5)

As an illustration of the calculation procedure of the lifting-surface method, the details of the procedure are presented
in this appendix for a rectangular wing with 4=2 and £=0.22, which is oscillating as a rigid wing about the midchord line
in a stream flow of A{=0.5. For the case of subsonic flow the main equation to be dealt with is equation (30a) or (30b).
The steps in performing the calculations are as follows:

(1) The first step in the process is to divide the wing into & number of areas as shown in figure 1, to select the number
and location of the control points, and, consequently, to determine the number of terms of the loading series (ogs. (5)) which
are to be retained. For the present case, the wing was divided into four equal chordwise areas for the calculation of the
distribution of the load in the chord direction. For the spanwise integration, the wing was divided into 21 segments of
which 19 are segments of span 2¢ and two (one at each tip) are of span e. The semispan ¢ of a segment is thus equal to onec-
twentieth the wing semispan. (In all of the calculations this quantity e is used as a nondimensionalizing factor so that the
full wing span becomes 40 units. For a wing with A=2, as considered in this example, the chord is therefore 20 units and
extends from —10 at the leading edge to 10 at the trailing edge. The reduced-frequency parameter & (based on the half-
chord) in terms of ¢ becomes 7:=I%E=% and for this example £=0.22 and £=0.022.)

Nine control points located at the ¥%-, %-, and ¥%-chord positions and at three span stations y=0.2, 0.5, and 0.8 of the
wing semispan were selected. The selection of nine control points determines the minimum number of terms of the loading
series. ‘There can be more control points than terms of the loading series; however, a method of least squares would havo
to be employed for the final solution.

In the present example, nine terms were retained in the loading series. Three chordwise terms, each modified by three
spanwise terms, were used so that the series contains nine unknown coefficients a,» and appears as

A?p=-§-w/s2—n’ [cot% (@00t @oan® +aoan®) +-sin (@104 a19n*+a1m*) +sin 20(am+ann’+am‘):| (A1)

It is only necessary to consider the even power terms in 5 since the loading is assumed to be symmetrical in the span direction

about the midspan position.
(2) The next step consists of calculating the replacement loads & from equations (17), (18), and (19). For the present

case, there are three (n=0, 1, or 2) sets of four simultaneous equations as follows:

Gln+ G2n+ Gsa'l" G4n= ffn(E) dE
(—2.83500—0.450007) Gyt (2.25500—0.476807) Gaq-t (0.60680 —0.296704) Gy, + (0.29180—0.220867) Gyp= S Fu(O) K¢ dt

(—1:17430—0.217603) Gy, (—2.83500—0.45000%) Gyt (2.25500—0.476804) G- (0.60680—0.296704) Gr= S F (&) K dt
(—0.85000—0.09037%) G+ (—1.17430—0.21760%) Gyt (—2.83500—0.450007) G+ (2.25500—0.476807) Gyp= S fo(t) Kar dt

(A2)

The coefficients of the replacement loads @ are values of the two-dimensional kernel K, and have been obtained
directly from the table of reference 34. The kernel K,.is a function of M, and Z=Fk(z—%). Consider as an examplo

the center of area at % chord ($= _j 0) and a control point at ¥ chord (x=—5). For £=0.022, Z= (0.022)(-—5+i—0>=0.055
and for M=0.5, the downwash factor K1=—2.83500—0.45000i may be read from the table of reference 34. Similarly,
for the same values of % and M and for the center of area at % chord <E=34—0> and the control point at midchord (z=0),

Z=0.022 o—%):—o.ms and, therefore, K,;=—0.60680—0.296703.

986
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The integrals on the right of equation (A2) are given as
follows for the three sets of equations corresponding to
n=0, 1, and 2. (See appendix B for discussion of method of
integration.)

For n=0, f,(§) =cot g and

f cotisin 0 do==
0 2

frcot %Ee sin 0 do=—2.88354—1.34125
0

(A3)
f cot gR’}E sin 0 d6=—2.97504—0.96137;
0
f' cob %T{ag sin § do=—3.03074—0.57320;
0 o
For n=1, fi(¥) =sin § and
LI 2 —I A
J; sin? ¢ d0—2
f'sin2 6 Ky d6=0.53912—0.636065 _
0
: @
f sin? § Ky d9=—0.45095—0.67032¢
0
f " gin? 0 Ky do—=—1.48547—0.553664
0 y
* For n=2, f2(£)=sin 20 and
r ~
f sin 26 sin 6§ d§=0
[}
f " gin 26 sin 0 K,; do——1.03882—0.20631
0
- (AB)

f " sin 20 sin 0 Ky df=—2.02994--0.041453
0

f gin 20 sin " Ky d6=—1.02892--0.28861%
[} f

/

The values of @ as computed from the three sets of simul-
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taneous equations formed by substituting equations (A3),
(A4), and (A5) into equation (A2) are -

Gio=1.72184-+0.002244 1
Goy=0.73737—0.01130%
Gly=0.44052—0.004844

0=0.241864-0.013894

G =0.307524-0.022417
G =0.47670+0.005827 L
Gy =0.47702—0.005837

@y =0.30956—0.022407

(A6)

(G12=0.45744-}-0.011034
(»=0.23804—0.010557
Gr=—0.23753—0.01073%
G“=—0'45795+0'01024i4

When the values of @ are obtained, the loading function
AP,(p) appearing in equation (30a) and defined by equation
(26) may be written as

AP, (u) =487 pV*y1—p* [Gro(ao+aoas®+app®) +
G (@10 tarap® +a141®) + Gra(@z0t-aaop®+-aaup®)

where v=1, 2, 3, or 4 corresponding to the 4 areas in the
chord direction.

Examination of this equation shows that certain products
of @,,u™/1—u* are needed. These products correspond to
the products ¢, (u)@,, in equation (30b). It has been found
convenient to arrange these products in a certain form for
later calculations. This form is shown in table IL where
values of the products are given for the complete systemn of
replacement loads.

(3) The downwash factors F must now be determined.
These factors may be calculated by the use of equation (31),
which was used for this example. With the adaptation of
high-speed computing machines to the problem, the kernel
in the form of equation (20) of reference 24 may be numeri-
cally integrated without, perhaps, the frequency and Mach
number restriction of the series. However done, the distance
between the centers of areas and the control points, , and 9/,
must first be determined. For the present case, the y’ dis-
tances for control point 1 and the first chordwise area corre-
sponding to g=1, for example, are

(A7)

. o [ o1 [o2] o3 I 04 | 05 [ 08 | 07 I 03 | 0.9
AN I 2 0 2 4 6. 8| 0] 13| 1
g -1 8 8 0| 12| 14| 18] 18| 20| =2

The distance z=2.5 is constant since the wing is rectangular,
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Since the loading in the example is symmetrical about the midspan, the loading factors which multiply F in equation
(30b) are the same for equidistance on each side of the midspan. Therefore, the values of F which are located at equal
distances from the midspan may be computed and added before multiplication by the loading; consequently, distances ',
and ¥z, have been given in the example where ¢’ prefers to the distance from & control point to the centers of the areas to the
right of the wing midspan and ¥’ refers to distances to areas to the left of the midspan. The final form of the 7 factors is

given in table IIT where, for each entry, the two values of F for ' and 3’z have been added.

(4) The next step is the multiplication of the loading factorsof table IT by the downwash factors F of table ITI in accord-
ance with equation (30b) which results in a 9 by 9 matrix of complex elements. This is given by the left side of the following

equation and the downwash conditions to be discussed subsequently are shown on the right of the equation:

(1.077134-0.18156%)ag+ (—0.05279+-0.095892) a;o+ (0.331124-0.041297) ag+- (—0.143654-0.043877)ag -+

(—0.055114-0.0146852) a1+ (—0.028784-0.007167) aze - (—0.07449 1-0.018037) ag+ (—0.02325-40.005882) a s+

(—0.01569-+0.002627)as=— (0.025—0.002757) 2%

(1.2032440.023397) 2+ (0.27977+0.086132) @10+ (0.60908 — 0.034427) @zt (— 0.21994 4-0.061737) ags 1

(—0.08525+40.022082) a2 (—0.03123 1-0.009211) ag 4 (—0.10617 -+0.027587) @y + (—0.03939 +-0.009247) a4+

(—0.0198410.004347)ag= — (0.0254-02)2=

(1.28588 —0.123231) a1 (0.608521-0.031321) a1+ (0.32497 —0.104811)azn+ (—0.26574 +0.087927) e -

(—0.11441-0.033047) @15+ (—0.02668 1-0.011774) g+ (—0.12604 1 0.040137) gy + (—0.05509+0.014477) a4+

(—0.01473-+0.00615%)ag=— (0.025+0.00275%) 27

(0.90622+0.110764)ag+-(0.01456 +0.066728) a0+ (0.27334+0.022497) ago+ (0.95139+0.00148%) ags +
(0.11217+0.02272¢) a5+ (0.25999+0.003957) age+ (0.65180 — 0.007158) ags+- (0.08428+0.012287) a+
(0.17638-+0.001167) aze= — (0.025—0.002757) 2

(1.11514—0.01962¢) @0+ (0.29257 40.05294) @10+ (0.47578—0.034104) azo+ (1.24921—0.130108) g+
(0.37821—0.00132¢) a1+ (0.41833—0.042717) ag+ (0.86338 — 0.096667) aos+ (0.26493 —0.004907) az,+
(0.28075—0.029774)asy=— (0.025+09)2x

(1.23341—0.156241)ag+ (0.56690+0.001267) 210+ (0.26664 —0.088067) ag+ (1.42203—0.281897) age +
(0.63972—0.06063¢)azg-+ (0.25104—0.088387) aze-}- (0.98606 — 0.201647) ags+ (0.44244 —0.045957) a4+
(0.17013 —0.060287) ags=— (0.02540.00275%) 2

(1.013494-0.15772¢) ag - (—0.032084+0.085737) a1+ (0.30911-4-0.035207) a2+ (0.25606 - 0.035427) g -1-
(—0.00455-4-0.019791)a,3-}+ (0.07656 1-0.008157)ase+ (—0.04884 1 0.02325¢) ag -+ (—0.02859 +4-0.007977) ar+
(—0.008944-0.0044817)a,— —(0.025—0.002757) 2= '

(1.15764+0.009758)ag+ (0.27905-0.074817) a0+ (0.56079 — 0.03381%) ag+ (0.29204—0.001927) g+~
(0.07234+0.016617)azs+ (0.13788—0.008797) @z + (—0.09262+0.028617)ags + (—0.03866 --0.011337) ar+
(—0.00479-4-0.003931) a2 = — (0.025+08)27

(1.24922—0.131267)ago+ (0.586494-0.021872)azo+ (0.30293 —0.098267)az+ (0.31639—0.037207) a +
(0.148280.003217) s+ (0.07495—0.024521) ags+ (—0.11594 +0.040077) ags+ (—0.04833+0.016037)ars+
(—0.00800-0.004027)age=— (0.025+0.002757) 2=

-

\

7

(A8)

(5) The boundary conditions w at the various control points are determined from the motion of the wing. For the

present case, oscillations about the midchord line of & nondeforming wing are considered.
Since f(z,y) =a(x—a) and, according to equation (3a),

of (zy) | of (z,y)
or ' ot

w(zy)=V

then (for downwash, lift, and displacement positive in the same sense)

w(z,y)=—[Vota(z—a)]
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and for harmonic motion

Q—”%@:—[l+ik(z—a)] (A9)
It is convenient to divide the simultaneous equations by the
factor 40/2% which appears in equation (30b). Therefore,
the downwash conditions for rotation about midchord
(e=0) are

'w(xh'yl) w(xhyl) W(I7,y7) __(0 025—0 00275,1:) 21‘,1
Va . .

Va Ve
W(2a,ys) _ w(@syys)  w(Ts,Ys)

Ve V“a‘ I;a" —(0.025+01) 27 > (A10)
W(xs,ys) W (@e,Ye) _ W (Ta,Y0)

e R 7 —(0.025-|—0.00275?:)21r/

where z; and 7, are the coordinates of the control points.
(6) By the use of the boundary condition w/V«, the set of
simultaneous equations (eqs. (A8)) may be solved for @um.
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For the example considered the values of the @, are

too=—0.150858+0.0334381 )
a10=0.045628 —0.1291627
g=—0.000862—0.0083374
am=—0.034965+-0.007107%
a12=0.057334—0.031615¢ ¢
@ =0.014221—0.0049227
ao=—0.025231+-0.0038607
014=0.058109—0.006198
05=0.045049—0.007729¢

(A11)

(7) These coefficients may be used in equations (5) to
determine the pressure distribution and, in turn, to obtain
section forces, total forces, and so forth. The total lift and
moment, for example, are given by equations (8) and (9) and

for the sample case are
¢y, =194.43°
(A12)
¢M.a=349~14°

|y, o =2.632
| Cae, o] =1.594



APPENDIX B

. TREATMENT OF CERTAIN INTEGRALS WHICH CONTAIN SINGULARITIES THAT ARISE IN THE CHORDWISE INTEGRATION

In the treatment of the chordwise mtegratlon in the sur-
face-loading method, certain integrals arise which contain
singularities (eds. (16)) and which must be given special
treatment. In the determination of the coefficients @,,
appearing in these equations, it is necessary to evaluate
integrals of the form

I= fwf,,(s).z?,s d ®1)

where f,.(£) is the nth typical chordwise pressure mode in the
series expression for the continuous pressure distribution and
K=K [Mk(z,—£)] is the two-dimensional kernel function.
In this equation, the kernel function becomes infinite at
£=z, so that the integrand is singular. In the following
sections, the methods of evaluating the integrals and taking
care of the singularities are discussed. First the case of
subsonic flow and then the case of sonic flow is discussed.

CASE OF SUBSONIC FLOW
For the case of subsonic flow, the integrals occurring in
equations (16a) and (16b) are

I= f " cotd sin 0 Kie d (B2a)
0

I,,=f'sinnasinal‘?,fd3 (n=1,2,...) (B2b)
1]

Since the kernel'in the integrands of I, and I, becomes
singular at {=z,, it is necessary to separate the kernel into
singular and nonsingular parts. The singular part can be
integrated in closed analytic form. The nonsingular part
can be handled routinely and accurately by numerical meaas.

The separation of the singularity has been accomplished by
Schywarz (ref. 34) in the following manner:

RQ1,2)=] 5 FON+i(0M) log, izl [+ Ras2) @9

where
Z=k(x,—¢)

The singularities now appear only in the quantity in brackets,
and the nonsingular part K; has been tabulated by Schwarz
(ref. 34). Substituting this expression into the integral of
equation (B2a) gives (after setting £=—cos # and z,—=—cos 6,)

fo "cot £ sin 0 (M, Z)do— f " (14-cos 0) KL (M, Z)do+
0

[ ateos o[ 250 1iaan 108, 121 a0 B9

The first integral on the right-hand side of equation (B4)
must be evaluated numerically. The second integral may
990

be found analytically and has the following value:

[ ateos o[ PED+iawn 1og, 121 | a=F P +
'LG(M) [—7log, 2— cos 8,+= log. k] (B5)

The treatment of the integral of equation (B2b) for n=1
proceeds in a similar manner to yield

| "sin® 0 (M, 2)d0= | "sin 0 Ka(M,2)do— FM) cos 0,+
%’r G‘(M)(—log, 2+:21- cos 20,+log, k) (B6)
Correspondingly, for n=2,
| "sin 20 sin 0 B0, 20— | sin 20 sin 0 Ko (11,20~

cos 30

3 2eee 08 00> (B7)

™ P(M) cos 26,4+ G(M)<

CASE OF SONIC FLOW

For the case of sonic flow, the form of the series expression
for the chordwise loading and also the form of the kernel
function differ from those of the subsonic case.

For M=1, the set of équations to be solved for the chord-
wise loads @,, is given by equations (34) and (35). In
equation (35), integrals of the following form appear:

1
2

L= 0+9" *Epdt  @=0,1,2..) (BY)
At M=1, the two-dimensional kernel function appearing in
these equations is given by equation (B23) of reference 24

and may be written as

tkz,
72T} A4+dke 2
T VR

+

(1—ﬂ1/;ke-‘*=u|:0<\/ —’?’)HSG /—k—zf)] (B9)

where
r=z—f
and where O(\/-) and S(ﬂ ) are Fresnel integrals
defined by
C’(a)=facos g t*dt
0

and

o
S(a)=-J sin 75 at
0
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As in the case of subsonic flow, the kernel function can be
geparated into singular and nonsingular parts. For this
purpose, cquation (B9) may be rewritten as

(B10)
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The first integral on the right of equation (B13) is non-
singular and can be evaluated numerically. The second inte-
gral contains a singularity and can be integrated analytically.

For n=0, the second integral on the right of equation (B13)

Eu=(Ba—Ey)+Ey is found to be
where i
k o —% _____
B =27 (140 = B1) . ﬁ:gd"‘ of G—p o B9
50 that where
2 [=
o o2 oo B
(K,E—K,e'>=#’_’{“ﬁk( Ty Ve o
N> .
Correspondingly, for n=1, the integral becomes
kxz,\ | . ke
(1—i)ﬁkc“”~|i0<1 /?" ""7'8(1 /7" }]} B12) g
of * PR k=Cern] ®16)
The integral I,, (eq. (B8)) can then be rewritten as
: . For n=2, there is obtained
L= [+9" HRa— R et [0+ R 019"
- J-1 = 2 37
: 519 of VA a0t g B17)
APPENDIX C

CALCULATION OF MOMENT ON DELTA WING

As mentioned in the text, the expression for the moment
depends on the particular plan form. As an indication of
the general method, the specific case of moment on a 45°
delta wing is given in this appendix. The moment is calcu-
lated about a line £=a as shown in sketch 3.

3
Sketoh 3.

The expression for the moment as given by equation (7b)
may be written as

M.=08Ci..= [ [ (¢—a)apadtdn
S

When equation (4) is used (for a 45° delta wing) the dis-
tance of an arbitrary point (», £) from the line £=a in terms
of the variable 4 is

E—a=s I:g tan A—(%—% tan A) cos —a %:I (C2)
160194—58—04

©cn’

Substituting Ap (from eq. (5a)) and equation (C2) into equa-~
tion (C1) and noting that

df—s( < ﬂta.n A)smﬂdﬂ b(x) sin 6 db
results in the following:
M=V [ [ i [cot 2 (oo +
8in 6(aw-+aua7*+arent) +sin 2a(am+am2+am‘):||:g tan A—
(C3)

<éﬂ—3 tan A) cos —a —ZZ‘Z:I sin 8 db dn
g8 2 8

In this example, three chordwise and three spanwise terms
have been retained in the series for the loading Ap.

Performing the indicated integration in equation (C3) re-
sults in the following equation for the moment on a 45° delta,

wing ( by making use of the fact that tan A=2 5 :
8

s oo

o) ta(g—a )+

(15 o5 raus(sg5—o g Yo (=T
e (55~ga o (355~ 158) |

(CH)
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APPENDIX D

DESCRIPTION OF A MULTIPLE-LINE ‘METHOD

Since a lifting-line method of handling the integral equa-
tion (eq. (1)) may often be simpler than a lifting-surface
procedure, it was considered interesting to investigate such
a2 method and to compare results with those obtained by the
surface approach. The purpose of this appendix is to pre-
sent a lifting-line method based on a steady-state procedure
developed by Schlichting and Kahlert (ref. 26) and to give
some results obtained by it.

DESCRIPTION OF THE METHOD

In the Schlichting procedure for steady flow the lifting
surface is divided into n spanwise strips of chord. ¢’=c¢/n,
where ¢ is the total chord. A lifting line is placed at the
¥-chord position (¢’f4) of each strip and the downwash is
satisfied at control points on the ¥-chord position of each
strip. This Y%-chord and ¥-chord location, respectively, of
the lines and control points is an essential element of the
procedure. It is a known fact that for a two-dimensional
flat plate in steady incompressible flow the exact value of
the lift can be obtained by placing a single lifting line at
the ¥-chord position and satisfying the downwash at the
%-chord position. Schlichting and Kahlert made use of this
fact in developing & procedure for finite swept wings.

In adapting Schlichting’s method to the oscillatory case
the same placement of lifting lines and control points has
been used and is shown in sketch 4, where, for example, the
wing has been divided into two spanwise strips:

Sketch 4.

In this example two lifting lines /, and L are considered
that lie, respectively, at ¥ and % of the total chord. Two
control points are shown, by 2, at 3¢ and 2, at %c. In the
sketch & is an angular spanwise coordinate related to a nondi-
mensional variable 5 (referred to the semispan) by n=—cos ®.

In the original form of the integral equation given by
equation (1), the continuous pressure distribution Ap is re-
placed by the sum of loadings on the individual lines. It is

22

assumed that the loading on the line /, can be represented
by a series of the form

Ap,=pV?8(an sin ®+a,; 8in 3@ +a,; sin 56+...) (D1)

which contains only one variable, the spanwise coordinate ®.
Since a separate loading function of this form is writlen for
each lifting line, the double integration of equation (1) is
reduced to a suin of single integrals. The integral equation
then appears as

) _ 1 .
YDt ap KB ke—n),ky—m]dy (D2)

where z, is the chordwise coordinate of the nth lifting line,
and where K, the nondimensional form of the kernel func-
tion defined by equation (28), has been employed.

When Ap, in equation (D2) is replaced by the series ex-
pression in equation (D1), the integral equation is reduced
to a summation of definite integrals multiplied by the co-
efficients, a,;, @.s, and so forth, as follows:

2 1
oz =g%; = [a,,l f sin & KM, ko, k) dn +

Gt f ' sin 38 K (M, ko, by dn+ - - ] D3)
~1

where
To—2—Z, Yo=Y—7

This equation sums the downwash at a particular contirol
point due to all the lifting lines and the various types of
loading, sin &, sin 3®, and so forth, on each line. The
specific problem is the determination of the coefficients
G, (a3, 80d so forth. In order to obtain the coefficients a,
equation (D3) must be written for each of a number of con-
trol points. This leads to & set of simultaneous equations
which can be solved for the values of a. At each control

point the function 9(—%@ is determined from the motion of

the wing in the same manner as in the surface-loading method.

Once the values of the coefficients @, @., and so forth,
have been found, they can be used in equation (D1) to define
the pressure distribution on any lifting line and in turn to
give various force or moment coefficients. As an example,
the total lift on a rectangular wing can be obtained from the

relation
2L,

OL= qS

1 3
a2

(D4)
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where L, is thelift on the nth lifting line. The totel pitching
moment about an axis z=a for a rectangular wing is given

by
M,

=éﬁ
1 T—a
52
where z, is the chordwise coordinate of the nth lifting line.
The main computational problem in the procedure is the
evaluation of the spanwise integrals of equation (D3), and

the handling of these integrals is discussed in the next
section. :

Car

(D5)

EVALUATION OF THE SPANWISE INTEGRALS

The spanwise integrations in equation (D3) are performed
numerically and, since the kernel function has not been
tabulated, it is necessary to make use of the series form of
the kernel given by equations (31) and (54) of reference 24-
In this form the nondimensional kernel function K appears
A3

K (M ez, ley,)=e~ ihﬂ{ — ( o'+’ +x”) 4 ik 1

YNz B2 | Vi Byd
B 1 k wip?
o [M +F (5._,,)_,32 log o373

" log (w/w_a“+ﬁ"yo”—xo):|+0(k")} )

V2464,

where all distances are referred to the semispan s.

For the integrals of equation (D3) which relate to lifting
lines behind the control point (x,<{0), the products of the
loading modes and the kernel K as defined by equation (D4)
can be evaluated at a number of values of  and the numerical
integrations can be readily performed. When the lifting
line lies ahead of the control point (z,>0), however, the
kernel becomes infinite at =y, and the singularities must
be carefully treated.

For the case z,>0 with y=y, singularities arise in the

terms
A (1/ xo’+6‘yo’+$o)
yoa V 2702+B1y02

B="‘% 1Og (V zoa_l_ﬁ"yoz_:vo)

Extraction of the singularities.—The singularities of the
terms .4 and B can be extracted and, when combined with
the loading terms sin &, sin 3®, and so forth, are integrable
in closed form.

Tor this purpose, term A can be rewritten as

A _(w/xa’+ﬁ2yoz+:co)= 2] 2
y02 Y mo’+ﬁ2'yog y"a y"g

(D7)

D8
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where the quantity in brackets is finite for all values of
n and where

. Vi8S -2, , 2 8
53_7?0[—( " ,—xﬁ o I vl vy (D9)

The remaining term on the right of equation (ID8) contains
the singularity and will be handled analytically.
The singularity of term B can also be isolated by writing

B=—Elog (T —2) =] Slog(LHTW ) |

glog Yo (D10)
where the bracketed quantity is finite for all values of 9
and where the remaining term can be handled analytically.

Special form of the kernel for the case ¥, >0.—The ex-
pressions for the terms A and B obtained in equations (D8)
and (D10) can be used to define a special form of the kernel
function for use in the case z,>0. For this case the kernel
can be written as

K (M, kzo,kys,) ,M=K(xo>0:y0) +EK'(2,>0,y,) (D11)

The term K (z,>0,7,) is nonsingular and is defined by

f
K(@,>0,y,) =K MM, kz,, ky,) +g*ﬂ=oiy%2+

-’;—g[log (m—%’th(——Wﬂ} (D12)

where K (M k,x,,,) is the form of the kernel defined by
equation (D8).

The second term on the right-hand side of equation (D11)
contains the singularities and is defined by

K (2,0, y0) = —e~ 1% %+§logy,’> D13)

The form of the kernel given by equation (D11) is used in
evaluating the integrals of equation (D3) for z,>0.

Performance of the spanwise integrations.—It is recalled
that for the case 2,<C0, the integrals of equation (D3) can be
readily evaluated numerically by making use of the form of
the kernel given by equation (D8). For the case z, >0, the
integrals of equation (D3) can be handled by using the special
form of the kernel defined by equation (D11). With this
expression, a typical integral of equation (D3) for x, >0 can
be written as

1 1
f sin m® K (M, kzo,leyl)e.s0 dn= f sin mBK 2,0y, dn-+
-1 -1

[ s meR/@>00) dn D1y
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where the functions K(x, >0,y,) and K’(z, >0,7.) are defined,
respectively, by equations (D12) and (D13). The first
integral on the right of equation (D14) can be readily evalu-
ated numerically. The second integral contains the singu-
larities and must be evaluated analytically. Its values

have been determined for two pressure modes, sin &=+/1—7?
and sin 3%=(47*—1)4/1—»? and are

f l . 1— K (2,2>0,y,) dn=—e—m"{-2w+
21— [(y+1) log (y+1)—(y—1) log (y—1)—2]+
%f:l V1—7—1=¢) log y.? dn} (D15)
and

IR Z Y4 (x,,>o,yo)dn=—e-"=o{ — 0380y
-1 s P,

12V1—9y* 4y’ — D [(y+1) log (y+1) — (y—D1og (y—1)—2]+
%’;f_‘l VI—7 (r—1)—T—7 (4"~ D] log yo’dn} MD16)

where
®,=cos™y

For the special case of a control point at y=0 and 2, >0,
equation (D15) becomes

f _‘nW K’ (2,0,—n)dn=—e""= ["2”“‘%2 (§+’r log 2)]
(D17)

and equation (D16) becomes

| ar— =7 B @>0—ndn=—s—=[ort5 ()]
(D18)

For the case of y£0 and =, >0, the integrals remaining on the
right of equations (D15) and (D16) are finite and can be
evaluated numerically.
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Once the integrals of equation (D3) have been ovaluated,
the simultaneous equations in terms of the unknown co-
efficients a,,, @,.3, and so forth, cen be formed and solved in
the manner indicated earlier. In the next section applica-
tion of the multiple-line method is made and results are com-
pared with those of the surface-loading method.

‘

APPLICATION OF METHOD AND DISCUSSION OF RESULTS

The multiple-line method just discussed has been applied
to the same rectangular wing with aspect ratio of 2 which
was treated by the surface-loading method. Calculations
have been made for several values of the reduced-frequency
parameter k at AM/=0 for the wing oscillating in pitch about
its midchord. Two sets of caleculations were made, one
using two lifting lines and two control points and the second
using four lifting lines and eight control points. In the two
sets of calculations, the control points were located chord-
wise in accordance with the %-chord concept discussed
previously. With regard to spanwise location, in the first
set of calculations, the two control points were placed at
the center of the wing; in the second set of calculations, four
control points were at the center of the wing and four at
0.866 semispan. Results of the calculations are shown in
figure 6 as the lift and moment coefficients and their asso-
ciated phase angles plotted against k. The results of the
surface-loading method are included for comparison.

For the calculations of the lift based on two lines and two
control points, the lift magnitude agrees well with the sur-
face-loading results only at the lower frequencies. For the
four-line, eight-point solution, results for the magnitude are
approaching the results of the surface-loading method.
Lift phase angles are in fairly good agreement for all sots of
calculations.

‘With regard to the magnitude and phase angle of the mo-
ment, results of the line approach with four lines and eight
control points are in fairly good agreement with those of the
surface-loading method. There is significant improvement
over the results of the two-line, two-control point calcula-
tions.

In general, it appears that in order to obtain accurate re-
sults with the multiple-line approach, a fairly large number
of lifting lines and control points must be used.
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TABLE I1L—VALUES OF G,
[n=0, 1, 2; »=1, 2, 3, 4]

(8) M=0

k Gho G G Go
0 . .
0. 02 1. 718194-0. 000616¢ 0. 736332—0. 000638 0. 441765—0. 000412: 0. 245302+ 0. 000434<
0. 06 1. 719093-10. 001479: 0. 736393 —0. 001.990s - 0. 441523 —0. 0011621 0. 244586-- 0. 001673¢
0.10 1. 7203914 0. 0018452 0. 736438—0. 0034461 0. 441159—0. 001816¢ 0. 243605-0. 0034174
0.20 1. 724451 +0. 000670¢ 0. 736223 —0. 007521+ 0. 439865—0. 003040z 0. 241054+ 0. 009801+
0.30 1. 728509—0. 003131s 0. 735276—0. 0121352 0. 438213—0. 0037321 0. 239596-0. 018998:
0.40 1. 731756 —0. 0090462 0. 733421 —0. 017155¢ 0. 436363 —0. 003983+ 0. 240053-10. 0301841
0. 50 1. 733788—0. 0166153 0. 730576 —0. 0224531 0. 434382—0. 003864+ 0. 242847+ 0. 042932¢
0. 60 1. 734444 —0. 025452z 0. 726706—0. 0279251 0. 432304—0. 003417z 0. 248139-+0. 065667941
0.70 1. 733669—0. 035272¢ 0. 721815—0. 033484« 0. 430143 —0. 002693s 0. 255966-10. 071449
0. 80 1. 731489 —0. 0458541 0. 715925 —0. 039049: 0. 427886—0. 001712z 0. 266293+ 0. 0866151
0. 90 1. 727947—0. 057051+ 0. 709075—0. 044562¢ 0. 425536—0. 000490z 0.279033+4-0. 102103¢
1. 00 1. 723123—0. 068755¢ 0. 701300—0. 0499821 0. 423081 +0. 000968¢ 0. 294089+0. 117769:

k Gu Gy Gy Gau
0
0. 02 0. 30680740. 001570z 0. 4785911 0. 0004031 0. 478591 —0. 000403z 0. 306807—0. 001570z
0. 06 0. 306843 10. 004695z 0. 478544 4-0. 001204¢ 0. 478548—0. 001204+ 0. 306861 —0. 004695z
0.10 0. 306916--0. 0077821 0. 478430--0. 001998% 0. 478448—0. 001998¢ 0. 307002—0. 007782:
0.20 0. 307109+4-0. 015272¢ 0. 477887+ 0. 003932: 0. 478021 —0. 0039287 0. 307779—0. 0162704
0. 30 0. 307572 0. 022405¢ 0. 4766914-0. 005807 0. 4772656—0. 006767% 0. 300268 —0. 022445t
0.40 0. 307077-+40. 029152¢ 0. 475503 40. 0075627 0. 476441—0. 0074963 0. 311776—0. 029218:
0. 50 0. 306637-0. 0355661 0. 473639 0. 009263¢ 0. 475337—0. 0091144 0. 315183—0. 0357153
0. 60 0. 305858-4-0. 041667z 0. 471315-4-0. 010902: 0. 474033—0. 0106132 0. 319590— 0. 0410561
0.70 0. 304718-4-0. 0474741 0. 468535-10. 012481¢ 0. 472541—0. 0119853 0. 325002—0. 047970:
0. 80 0. 303222-10. 0530112 0. 46563074 0. 014008: 0. 470852—0. 0132241 0. 331415—0. 0537961
0.90 0. 301382 0. 068287% 0. 4616441 0. 015488z 0. 468970—0. 014325¢ 0. 338800— 0. 069450:
1.00 0. 209211--0. 063309z 0. 457560-}-0. 016922z 0. 466894—0. 015278s 0. 347131 —0. 064963¢

k G G . G Ga
0
0. 02 0. 46017240. 0014464 0. 239286—0. 0007157 —0. 239286—0. 000717% —0. 46017240. 000712¢
0. 06 0. 460089-10. 002179: 0. 239261 —0. 002140z —0. 239261—0. 0021541 —0. 4600894-0. 0021154
0.10 0. 459935-0. 0036651 0. 239193—0. 0035569: —0. 239193 —0. 0035953 —0. 459936-+10. 0034891
0.20 0. 4593031 0. 007477+ 0. 238877—0. 007074z —0. 238872—0. 007208z —0. 4569308--0. 0068051
0.30 0. 4583924 0. 011394¢ 0. 238383—0. 010540« —0. 238368—0. 0108241 —0. 458407-+0. 009970:
0.40 0. 4567251-+0. 015372¢ 0. 237728—0. 0139541 —0. 237693 —0. 0144221 —0. 457286-+0. 0130041
0. 50 0. 455894 -+0. 0193751 0. 236911—0. 017309+ —0. 236849—0. 0179921 —0. 455966 -0. 0159261
0. 60 0. 45433140. 023372¢ 0. 235937—0. 020601« —0. 235838—0. 021518¢ —0. 4544304 0. 018747¢
0.70 0. 452569-+0. 0273351 0. 234811—0. 023827z —0. 234665— 0. 024981¢ —0. 4527154-0. 0214734
0. 80 0. 450610-}-0. 0312444 0. 233530—0. 0269761 —0. 233331 —0. 028378: —0. 4508090 0. 024110:
0. 90 0. 4484531 0. 0350832 0. 232102—0. 030047+ —0. 231838—0. 0316967 —0. 448717+40. 026660z
1. 00 0. 446108 0. 0388352 0. 230529—0. 033030z —0. 230195—0. 034923¢ —0. 4464421 0. 029118¢
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TABLE I—VALUES OF G,,—Continued

(b) M=0.5
k G Gao G G
0. 02 1. 7182174 0. 0008341 0. 736335—0. 0008491 0. 441762—0. 0005511 0. 2452791 0. 0005651
0. 04 1. 7186214-0. 0015324 0. 736387—0. 001721¢ 0. 441645—0, 0010753 0. 244937-+0. 0012653
0. 06 1. 719202 0. 002088¢ 0. 736390—0. 002623¢ 0. 441498—0. 001571+ 0. 244506+0. 0021062
0.08 1. 7198514-0. 0025051 0. 736400—0. 003556z 0. 441332—0. 002037¢ 0. 244010 0. 003088:
0.10 1. 720682+ 0. 0027961 Q. 736408—0. 0045137 0. 441132—0. 002479+ 0. 24347140. 0041962
0.12 1. 72137140, 002941+ 0. 736408—0. 006492¢ 0. 440915—0. 002896¢ 0. 2428991 0. 005447+
0. 14 1, 7222234-0. 0029361 0. 736379—0. 006502¢ 0. 440675—0. 003278¢ 0. 242316-0. 0068441
0.18 1. '723147+0. 002795 0. 736308—0. 007647+ 0. 440405—0. 0036721 0. 2417334 0. 0085241
0.18 1. 7239624 0. 0025641 0. 736244 —0. 008599z 0. 4401556—0. 003969: 0. 241262 0. 0100052
0.20 1. 724866-0. 002177¢ 0. 736099 —0. 009688+ 0. 4398656 —0. 0042741 0. 240763+0. 011785:
0.30 1. 728804—0. 001338: 0. 735006—0. 015459z 0. 438406 —0. 0054961 0. 2393774-0. 0222941
0. 40 1. 731636—0. 0071794 0. 732054—0. 021727¢ 0. 436931 —0. 006275+ 0. 2400724-0. 0351811
0. 50 1. 732840—0. 014669z 0. 729879—0. 0283941 0. 435561 —0. 0087054+ 0. 2433134-0. 049768:
k Gn Ga Ga Ga
0. 02 0. 306817+40. 002095 0. 478588+ 0. 000537+ 0. 478584—0. 000537+ 0. 306807—0. 0020941
0. 04 0. 306838--0. 0041821 0. 478561+0. 001072¢ 0. 478559—0. 001072¢ 0. 306838—0. 004182¢
06 0. 306892--0. 006258: 0. 478498--0. 0016064 0. 478500—0. 001606¢ 0. 306906—0. 006258¢
08 0. 306955 0. 0083207 0. 4784034-0. 002137+ 0. 478417—0. 002136¢ 0. 307021 —0. 008321
10 0. 3070264-0. 0103751 0. 478293+ 0. 0026661 0. 478317—0. 002664+ 0. 307160—0. 010378:
12 0. 30710240. 012407¢ 0. 4781524-0. 003192z 0. 478201—0. 003191z 0. 307341 —0. 012408:
14 0. 3071974-0. 014415z 0. 477988+-0. 0037111 0. 478061—0. 0037111 0. 307550—0. 014415z
16 0. 30729740. 016605¢ 0. 4777714+ 0. 004280z 0. 477885—0. 0042794 0. 307843—0. 0166067
18 0. 3073894-0. 018381t 0. 477573+0. 004743¢ 0. 477720—0. 0047412 0. 308114—0. 018382
20 0. 307493 -+ 0. 020326+ 0. 477327 0. 005250+ 0. 477520—0. 005249+ 0. 308456 —0. 0203287
30 0. 307896--0. 0298041 0. 4756164-0. 007738: 0. 476247—0. 007751z 0. 311037—0. 029792¢
0. 40 0. 3080566 0. 038807+ 0. 473175-4-0. 0101232 0. 474563—0. 0101714 0. 315002—0. 03875%:
0. 50 0. 3078734-0. 047441¢ 0. 460953-10. 012440¢ 0. 472474—0. 0125264 0. 320496 —0. 0473551
k G G G Ga
0. 02 0. 460170-+0. 000958: 0. 239281 —0. 0009541 —0. 239283 —0. 0009557 —0. 460168--0. 000951¢
0. 04 0. 4601360. 001924¢ 0. 239276—0. 001906¢ —0. 239279—0. 0019112 —0. 460133-}-0. 001893¢
0.06 0. 460062 0. 002898z 0. 239239 —0. 002856¢ —0. 239245—0. 002870z —0. 460056+ 0. 002828:
0. 08 0. 459969--0. 003882: 0. 239191 —0. 003806z —0. 239191—0. 0603831z —0. 459969--0. 0037541
0.10 0. 459867-0. 004870: 0. 239132—0. 0047541 —0. 239133—0. 0047921 —0. 459856-}-0. 0046751
0.12 0. 4569720+ 0. 0058691 0. 239058—0. 005700: —0. 2390561 —0. 0057561 —0. 459727 0. 0055875
0. 14 0. 459570 0. 006871% 0. 238974—0. 006643+ —0. 238967—0. 006720 —0. 4595774-0. 006492z
0.16 0. 459372+40. 0079811 0. 238861 —0. 007679: —0. 238857—0. 0077821 —0. 459376+ 0. 0074807
0.18 0. 4592114 0. 008896z 0. 2387567—0. 008528: —0. 238763 —0. 008650« —0. 459205+ 0. 008282z
0.20 0. 4590174-0. 009915z 0. 238632—0. 00946415 —0. 238647—0. 009619« —0. 459002+ 0. 0091693
0. 30 0. 457749--0. 015086¢ 0. 237839—0. 0141572 —0. 237842—0. 014470z —0. 457746--0. 0135423
0. 40 0. 456166--0. 020323¢ 0. 236761 —0. 018815s —0. 236783—0. 019317¢ —0. 4561441-0. 017809z
0. 50 0. 4542441 0. 025623: 0. 235398—0. 023459¢ —0. 235440—0. 0241591 —0. 4542024-0. 021995z
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TABLE I.—VALUES OF @,,—Concluded

(c)M=1.0

k G]D G!O Glo G‘D
0. 10 2. 220453+ 0. 024422¢ 0. 9380214 0. 048128¢ 0. 684779+0. 057930¢ 0. 166747—0. 130480z
0.12 2. 219995+ 0. 029881+ 0. 937372+ 0. 0578241 0. 6846374 0. 0700041 0. 157996—0. 167709:
0.16 2. 218702+ 0. 039212¢ 0. 9364694-0. 0765234 0. 683875--0. 022470z 0. 160954 —0. 2082063
0. 198675 2. 2172794 0. 0497463 0. 935663 -+0. 0964131 0. 67737240. 117037% 0. 160686 —0. 2631963
0. 242825 2. 215455+ 0. 0569393¢ 0. 948201+0. 103049z 0. 67416910, 1494197 0. 162176—0. 311861¢
0. 286975 2.21237340. 070518: 0. 930797+0. 136024z 0. 6796184 0. 166138: 0. 177212—0. 372680:

k Gu Gn G Ga
0.10 0. 27757540. 005300z 0. 3948361 0. 0091532 0. 480561-+0. 012698¢ 0. 180361—0. 02715615
0.12 0. 27751740. 0063863 0. 394828-1-0. 0109332 0. 480658--0. 0165433: 0. 180330—0. 0327521
0.16 0. 277390--0. 008396z 0. 394583--0. 014674+ 0. 480234 -0. 0205951 0. 181126—0. 04306562
0. 198675 0. 277234-1-0. 010424¢ 0. 394336-1-0. 018212¢ 0. 479269-+0. 0254851 0. 182494 —0. 0641213
0. 0. 277012+40. 0127342 0. 393992-0. 022239z 0. 47951740. 031221¢ 0. 182812—0. 066194¢
0. 286975 0. 276750+ 0. 0150341 0. 393575-0. 0262662 0. 479018+0. 0368701 0. 183990—0. 0781703

k (e (% G Gu
0.10 0. 052035-4-0. 0013152 0. 178118+0. 004118: 0. 3422804 0. 008298: 0. 227667—0. 0137314
0.12 0. 052030--0. 001571% 0. 178064 1-0. 004925¢ 0. 342163-40. 0099931 0. 227743—0. 016489+
0.16 0. 051996--0. 002091¢ 0.177993+0. 006633z 0. 3420124-0. 0134056¢ 0. 227909—0. 0221294
0. 198675 0. 051964--0. 002595t 0. 1778774-0. 008233+ 0. 341668--0. 018622 0. 228491 —0. 0274501
0. 242825 0. 051914+0. 003170: 0. 177719+-0. 0100563 0. 341484-10. 0203222 0. 228883 —0. 033548:
0. 286975 0. 051855--0. 0037421 0. 177528--0. 011878s 0. 341115+0. 023999¢ 0. 229502—0. 039619¢
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